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Abstract

The probability distribution of the four-phase structure
invariants (4PSIs) involving four pairs of structure factors is
derived by integrating the direct methods with isomorphous
replacement (IR). A simple expression of the reliability
parameter for 16 types of invariant is given in the case of a
native protein and a heavy-atom derivative. Test calculations
on a protein and its heavy-atom derivative using experimental
diffraction data show that the reliability for 4PSI estimates is
comparable with that for the three-phase structure invariants
(3PSIs), and that a large-modulus invariants method can be
used to improve the accuracy.

1. Introduction

Estimates of three-phase structure invariants (3PSIs) based on
integrating the techniques of direct methods and isomorphous
replacement (IR) have been studied extensively (Hauptman,
1982; Giacovazzo et al., 1988) and some encouraging results
have been obtained by their application to macromolecular
structures (Hauptman et al., 1982; Giacovazzo et al., 1994).
Probabilistic approaches leading to estimates of four-phase
structure invariants (4PSIs) have been developed by several
authors (Schenk, 1973; Hauptman, 1974; Giacovazzo, 1975).
The results have been used to improve starting-set and figures-
of-merit procedures (Schenk, 1973; De Titta et al., 1975) and, in
combination with 3PSIs, to solve some small macromolecular
structures (Sheldrick, 1993). More recently, the probability
theory of 4PSIs in the IR case was proposed separately by
Kyriakidis er al. (1996) and Giacovazzo & Siligi (1996a).
Kyriakidis et al. (1996) applied a technique that assumes the
difference structure factors of two isomorphous structures as
random variables, and Giacovazzo & Siliqi (1996a) derived the
probability distribution of seven pairs of isomorphous struc-
ture factors.

It was observed from the results of Giacovazzo & Siliqi
(1996b) that the 4PSI probability distribution derived from
seven pairs of structure factors, four main terms and three
cross terms, depends mainly on the four main terms. The cross
terms contribute to the distribution in such a way that only
those with small |A| values change the sign, with poor relia-
bility, provided by the main terms, while those with large |A|
values do not. Thus the formula based on four main pairs of
structure factors as the first approximation for the 4PSI
distribution seems to be worth studying in greater detail. We
present here the probability distribution of four pairs of
isomorphously related structure factors, taking the structure
factors themselves as random variables, and examine the
differences between the 3PSI and 4PSI estimates. Moreover,
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we suggested recently a method of so-called large-modulus
invariants (LMIs) in the phasing process (Hu & Liu, 1997). It
makes use of all types of the invariants, e.g. eight types for
3PSIs, rather than that consisting only of the native structure
factors. This work aims also at providing a theoretical basis for
16 types of 4PSIs and checking how the LMIs work in the 4PSI
estimates.

2. The conditional probability distribution of 4PSIs given four
pairs of structure-factor magnitudes

Assume that R;, ¢, and S;, ¥, i = 1, 2, 3, 4 are the magnitudes
and phases of the corresponding four pairs of structure
factors Ey, Ex, E;, Ey and Gu, Gk, G, Gu in the IR
case. When a quartet of reciprocal-lattice vectors H, K, L, M
satisfies H+ K+ L +M =0, there exist 16 4PSIs of the

type:

@ =Py + g + QL+ Ons
: ey
w1 = Yy + Y + ¥y + ¥n-

The conditional probability distribution of (1) can be found
from the joint probability distribution P(R;, R,, Rs, Ry, S1, S,
S3, Sas @15 O35 O35 Cus Yys Vo, Vs, Wy), Which is derived via its
characteristic function, by fixing R;,..., S, and integrating
with respect to different ¢; or ; variables.i The final results
are expressed as

P(w;|R\,R,,R5, R, S}, S,, 85, 8,)

=~ K; exp(A; cos w,), i=1,2,...,16, 2)

where K; is a normalizing constant. The distribution (2) has a
unique maximum at w; =0 or w when A, >0 or A; <0,
respectively. The reliability parameter

1 The full derivation of the joint probability distribution of the
eight structure factors Ey, Eg, Ep, Ey, Gu, Gk, Gr, Gm, where
H+ K+ L+ M =0, along with the conditional probability of the
4PSIs given the eight magnitudes |Ey|, |Ex|, |ELl, |Eml, |Gul, 1Gkl,
|GLl, |Gyl is available from the IUCr electronic archives (Reference:
AUO0150). Services for accessing this information are described at the
back of the journal.
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Table 1. Comparisons between the 4PSI and 3PSI estimates using different reflection sets from the experimental data of cytochrome
cssp and its PtCI3~ derivative

NR is the number of the relationships (4PSIs or 3PSIs) having |A| > |A

min ‘ >

% is the percentage of the invariants whose cosine signs are correctly

estimated, ERR = (|¢, — w|) (°) with ¢, being the true value and w the estimated value of the invariant. The reflection subsets are defined as
follows: (I) 198 reflections with |Ag| > 1.1; (IT) 207 reflections with |E| > 1.4 and |Ag| > 0.7; (IIT) 210 reflections with |E| > 2.0.

(1) I1)

| A yin| NR % ERR NR
4PSI

0.0 513066 80.8 48.8 411069
1.0 499399 81.1 48.5 87855
2.0 227522 85.6 40.9 15722
3.0 83883 89.3 333 4318
4.0 33639 91.2 283 1617
6.0 6629 93.1 21.7 432
3PSI

0.0 3471 91.6 30.5 2407
1.0 3471 91.6 30.5 1481
2.0 2949 92.3 28.6 414
3.0 1569 95.3 225 138
4.0 700 96.4 19.1 48
6.0 166 98.8 12.6 4

A; = 2[B)RIRyRsRy — Bi(SIRo R R, + RS, Ry R,
+ RIR,S; R, + RiRyR3S,) + By(S1S:R3 R,
+ S\R,S5R, + S{R,R;S, + RS, SiR,,
+ RIR, S, + RIR,S3S,) — B3(815:83R,
+ S1S,R;S, + S| R, S5S, + R S,85S))
+ £1515,5:54, ®)

where R; = CzR;, S; = C;sS;; if the jth phase of the invariant
w; is ¢, then Cjp = 1, Cjg = I,(x)/1,(x); if the jth phase of the
invariant w; is ¥, then Cz = I;(x)/[y(x), C;s = 1; x = 2yR;S;,
j=1,2,3,4 and /; and I; are the modified Bessel functions.
Equations (2) and (3) allow the estimates of 4PSIs from any
two isomorphous structures. In the special case that the deri-
vative (D) is obtained by addition of heavy atoms (H) to the
native protein (P), (3) can be expressed in a quite simple form:

A= 20‘4PO-27P2R£R/2R/3R£1 + 204HG;13A1A2A3A47 4)

where A, =(CylFpl = CrlFp/ogy,  j=1,2,3.4,
Op = ZPZj’ Oy = ZHZ]" Oyp = ZPZ/" Oy = ZHZ]'7 Z;

is the atomic number of the jth atom in the unit cell and the
summations over P and over H indicate that the indices j vary
over protein atoms (N) and over heavy atoms (Ny), respec-
tively. Because 0,,0;57 < 0,053, We obtain a practically
useful formula for the most common case involving a native

and a heavy-atom derivative:
A, 20,008 A A AN, i=1,2,...,16. )

Defining A; = Ajz when Cjp =1 and A; = Ajg when Cjg = 1,
we further have the formulae of A; for each invariant in (1):

A= 204HJ;}%A1RAZRA3RA4R7
: (6)
A= 2‘741-102_1~%A15A25A3SA4S-

+ The parameters y and B are defined in the supplementary material.
See previous footnote.

(1)

% ERR NR % ERR
64.7 711 433082 524 86.6
749 57.8 3188 82.7 39.1
84.0 432 823 89.9 26.1
1.1 286 390 93.8 153
94.1 203 210 98.1 46
99.1 94 68 100.0 0.0
77.2 53.9 2531 54.4 85.0
81.0 475 166 69.9 65.4
89.6 339 20 90.0 238
89.9 303 9 77.8 292

100.0 186 - - -

100.0 0.0 - - -

The 3PSI estimate is in general believed to be more reliable
than the 4PSI estimate in the case of non-isomorphous re-
placement because the reliability parameters are a function of
N~Y2 and N~! for 3PSIs and 4PSIs, respectively. It is clearly
shown from (5) that the 4PSI distribution is mainly related to
the contribution from heavy atoms in the derivative and the
quality of the estimate can be comparable with that of 3PSIs
because the coefficient 0,052 >~ Nj! does not differ so much
from N,;l/ % in the 3PSI formula when N ;7 1s not large. Equation
(5) has a definitive physical significance: since Cjz or Cjs is the
expected value of cos(y; —¢;) (Fortier et al., 1985), A; is
nothing but a projection of the normalized structure-factor
vector of heavy-atom structure on the structure-factor vector
of protein structure or on the structure-factor vector of deri-
vative structure when the jth phase of the invariant is ¢ or .
Thus we have |A)| < |Ej;|. When the positions of heavy atoms
are known, we can make use of the actual value of A]- derived
from the triangle composed of |E}p|, | E;p| and |E;| to enhance
the effectiveness of (5).

3. Test calculations and discussion

Test calculations were performed on protein cytochrome css,
which crystallizes in space group P2,2,2, with molecular
weight ~ 14 500 Da, and its PtCl3~ derivative (Timkovich &
Dickerson, 1976). In order to assess the estimate quality of (5),
three subsets of the data were selected, as deﬁned in Table 1,
from 2807 experimental data pairs up to 2.5 A resolution. For
the sake of comparison, the statistical results of native invari-
ants gy + @x + @ + @y for 4PSIs and gy + ¢k + ¢, for 3PSIs
are given in Table 1 for each subset. We note the following. (a)
The |A| values for 4PSIs and 3PSIs are substantially compar-
able but, at the same |A,;,| level, the number of the rela-
tionships (NR) for 3PSIs is much smaller. (b) The overall
accuracy is in the order (I) > (II) > (III) for both the 3PSI and
the 4PSI cases. The results suggest that, as predicted, the
reliability depends on |A| values and is in effect a function of
Np' rather than of N~'. Therefore, the 4PSI estimate accuracy
is greatly improved in the IR case. It is known (Schenk, 1973)
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Table 2. Comparisons between LMIs and the native invariants

w, for the 4PSI estimated results using 192 reflections with | Ag|

or |Ag| > 1.4 from the calculated data of cytochrome cssy and its
PtCI;™ derivative

See Table 1 for definitions of NR, % and ERR.

LMI o,
Al NR % ERR  NR % ERR
0.0 996792 1000 85 996792 859 376
2.0 996357 1000 85 590335 986 183
40 268732 1000 5.9 124878 1000 108
5.0 53561 1000 3.7 25972 100.0 6.9
6.0 6766 1000 1.0 3754 100.0 14

that a 4PSI satisfying H + K + L + M = 0 can be obtained by
the combination of two 3PSIs with one phase in common, the
index of which corresponds to the sum of cross terms among H,
K and L. In order to check how many 4PSIs are obtainable
from 3PSIs in a given data set, 513 066 4PSIs from the subset
(I) were examined. The results show that more than two thirds
of the 4PSIs are independent of 3PSIs. They may give addi-
tional information in practical applications within a given data
range.

The use of LMIs has proved to be effective in improving the
accuracy of the 3PSI estimates (Hu & Liu, 1997). For 4PSIs, the
point of the method is that for each quartet relationship in a set
of reflection data with the largest |A| values, only the LMI,
which consists of those ¢ or ¥ corresponding to large R or S
values, is calculated. This method offers the opportunity for all
16 types of the invariants to be used actively. The reflection set
used to check the effect of LMIs in Table 2 comes from 4159
calculated structure-factor pairs of cytochrome csso and its
PtCI3~ derivative. For each quartet relationship, a LMI from
(1) was calculated by a corresponding formula in (6). It is
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evident that LMIs are highly effective in improving the accu-
racy. The test provides leads for further study on how to make
use of all 16 types of 4PSIs, which has not been clear before.

A potential use of 4PSIs would be to estimate some phases
with special values when some symmetric relations are incor-
porated in the probability formula. For such phase-restricted
reflections, the LMI method will be easily put into effect to
improve the estimate quality. A relevant study is in progress.

This work was supported by the National Natural Science
Foundation of China (No. 29573127 and No. 29773045).
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